
### **Annual IAWEA Biosolids Conference**

March 15, 2023

## Iowa City Biosolids and Biogas Planning

Tim Wilkey, P.E., Superintendent, City of Iowa City Randy Wirtz, P.E., Strand Associates, Inc.®





The content of this presentation is not to be downloaded, copied, used, or otherwise transmitted without the prior consent of Strand Associates, Inc.®

### **History of WWTP/Digestion Components**

- 1988-89 South WWTP Construction:
  - 2 Meso Digesters + Storage
  - o Land application of Class II (B) biosolids
- 2000-2002 Upgrades:
  - o 4 new digesters
  - 2 Thermo + 4 Meso
  - Three stage TPAD operation
  - Land application of Class 1 (A) biosolids
- 2012-14 Upgrades:
  - Covered biosolids storage





### **Scope of Facility Plan**

- Anaerobic digestion complex
- Struvite mitigation
- Digester gas reuse





### **Project Drivers – Age and Sustainability**

To be successful, this project must:

- Establish a plan and CIP to renew assets related to digestion
- Iowa City Sustainability Goals
  - o Digester gas
  - Nutrient recovery
  - o Class A biosolids
  - Planning to meet future needs



# **Digester Complex Rehabilitation**







## **Digester Loadings – Current Conditions**

| Year    | Average<br>Digester<br>Sludge<br>Feed Flow<br>(gpd) | Maximum<br>Month<br>Digester<br>Sludge Feed<br>Flow<br>(gpd) | Total System<br>Average HRT<br>(days) | Total<br>System<br>Maximum<br>Month<br>HRT<br>(days) | Thermophilic<br>Average HRT<br>(days) | Thermophilic<br>Max Month<br>HRT<br>(days) |
|---------|-----------------------------------------------------|--------------------------------------------------------------|---------------------------------------|------------------------------------------------------|---------------------------------------|--------------------------------------------|
| 2017    | 61,200                                              | 80,800                                                       | 39                                    | 30                                                   | 17                                    | 13                                         |
| 2018    | 57,000                                              | 78,900                                                       | 42                                    | 30                                                   | 18                                    | 13                                         |
| 2019    | 53,800                                              | 68,900                                                       | 45                                    | 35                                                   | 19                                    | 15                                         |
| 2020    | 46,300                                              | 65,500                                                       | 52                                    | 37                                                   | 22                                    | 16                                         |
| 2021    | 49,400                                              | 71,200                                                       | 49                                    | 34                                                   | 21                                    | 15                                         |
| Average | 53,700                                              | 73,100                                                       | 45                                    | 33                                                   | 19                                    | 14                                         |

Note: gpd=gallons per day

Table 2.03-2 Digester Feed Flow

### **Fairly Long HRTs**



### **Digester Loadings – Current Conditions**

| Year    | Total System<br>Average VLR<br>(Ib VS/1,000 ft <sup>3</sup> /day) | Total System<br>Max Month VLR<br>(Ib VS/1,000 ft³/day) | Thermophilic<br>Average VLR<br>(Ib VS/1,000 ft <sup>3</sup> /day) | Thermophilic Max<br>Month VLR<br>(Ib VS/1,000 ft³/day) |
|---------|-------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------|
| 2017    | 60                                                                | 84                                                     | 137                                                               | 194                                                    |
| 2018    | 57                                                                | 75                                                     | 131                                                               | 173                                                    |
| 2019    | 55                                                                | 73                                                     | 128                                                               | 169                                                    |
| 2020    | 49                                                                | 65                                                     | 112                                                               | 150                                                    |
| 2021    | 60                                                                | 111                                                    | 138                                                               | 256                                                    |
| Average | 56                                                                | 82                                                     | 129                                                               | 188                                                    |

Notes: VLR=volumetric loading rate; Max=maximum

Source: Table 2.03-2 and Table 2.03-3

### Table 2.03-4 Digester Loading Rates

## **Fairly Low Loadings**



### **Digester Gas Production – Current Conditions**

| Year    | Digester<br>Sludge<br>Feed<br>(Ib VS/day) | %<br>VS of<br>Raw<br>Sludge | %<br>VS of<br>Digested<br>Sludge | %VS<br>Destroyed | VS<br>Destroyed<br>(Ib VS/day) | Gas<br>Produced<br>(ft <sup>3</sup> /day) | Gas<br>Produced<br>(ft <sup>3</sup> /lb VS<br>destroyed) |
|---------|-------------------------------------------|-----------------------------|----------------------------------|------------------|--------------------------------|-------------------------------------------|----------------------------------------------------------|
| 2017    | 19,100                                    | 77                          | 62                               | 51               | 9,797                          | 190,400                                   | 19                                                       |
| 2018    | 18,200                                    | 77                          | 62                               | 53               | 9,573                          | 179,000                                   | 19                                                       |
| 2019    | 17,800                                    | 78                          | 62                               | 54               | 9,701                          | 206,100                                   | 21                                                       |
| 2020    | 15,600                                    | 80                          | 63                               | 58               | 9,062                          | 197,700                                   | 22                                                       |
| 2021    | 19,200                                    | 81                          | 63                               | 59               | 11,393                         | 239,800                                   | 21                                                       |
| Average | 17,900                                    | 79                          | 62                               | 55               | 9,856                          | 200,500                                   | 20                                                       |

Notes: ft<sup>3</sup>/lb VS=cubic feet per pound volatile solids; ft<sup>3</sup>/day=cubic feet per day

 Table 2.03-5
 Biosolids Loading and Gas Production Summary



# **Population Projections**

| 2014 <sup>1</sup> | Current        | 2025 <sup>2</sup> | 2035 <sup>2</sup> | 2045 <sup>2</sup>       |
|-------------------|----------------|-------------------|-------------------|-------------------------|
| 73,415            | 77,971         | 80,700            | 88,200            | 95,700                  |
| 1,125             | 1,172          | 1,200             | 1,300             | 1,400                   |
| 74,540            | 79 <b>,143</b> | 81,900            | 89,500            | 97,100                  |
|                   | 1,125          | 1,125 1,172       | 1,125 1,172 1,200 | 1,125 1,172 1,200 1,300 |



### **Digester Loading and Gas Production Projections**

| Year                 | Digester<br>Sludge<br>Feed<br>(gpd) | Digester<br>Sludge TS<br>Load<br>(Ib TS/day) | Digester<br>Sludge VS<br>Load<br>(Ib VS/day) | Overall<br>Digestion<br>HRT<br>(days) | Overall VLR<br>(lb VS/1,000 ft³/day) |
|----------------------|-------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------|--------------------------------------|
| Current <sup>1</sup> | 53,700                              | 22,800                                       | 17,900                                       | 45                                    | 56                                   |
| 2025                 | 55,600                              | 23,600                                       | 18,500                                       | 43                                    | 58                                   |
| 2035                 | 60,700                              | 25,800                                       | 20,200                                       | 40                                    | 63                                   |
| 2045                 | 65,900                              | 28,000                                       | 22,000                                       | 36                                    | 69                                   |

<sup>1</sup>Source: Table 2.03-2 and Table 2.03-3

 Table 3.02-3
 Projected Overall Digester Loadings

Plenty of Capacity for the Future



### **Anaerobic Digester Complex - Capacity**

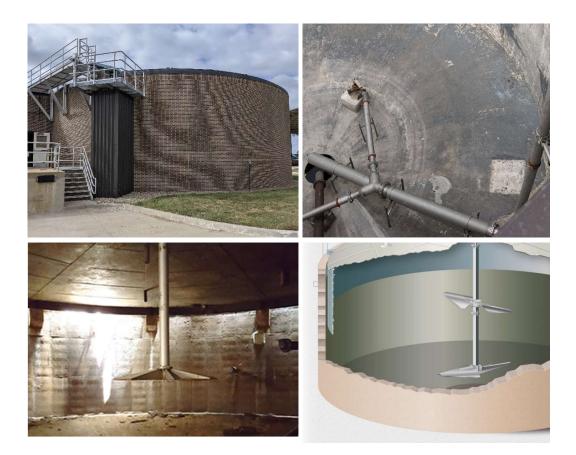
- Existing TPAD process has capacity for year 2045 design conditions
- Project Focus = Rehabilitation and Asset Renewal
- Evaluate digester mixing technologies





### **Evaluation of Mixing Alternatives**

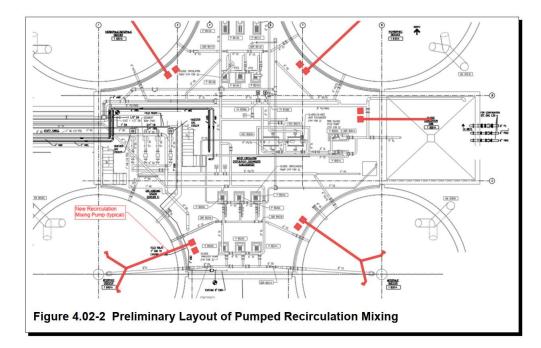
- Existing Mixers
  - EQ Tank (draft tube)
  - Thermos (draft tube)
  - Mesos Stage 1 (draft tube)
  - Mesos Stage 2 (pumped recirc)
  - Storage (pumped recirc)
- Problems with existing
  - Age and condition
  - Struvite adhesion and deposition






### **Evaluation of Mixing Alternatives**

### Alternatives


- o M1: draft tubes for all
- M2: pumped recirculation for all
- M3: linear motion (LM) mixers for all
- M4: vertical shaft mixers for all
- o M5: replacement in-kind





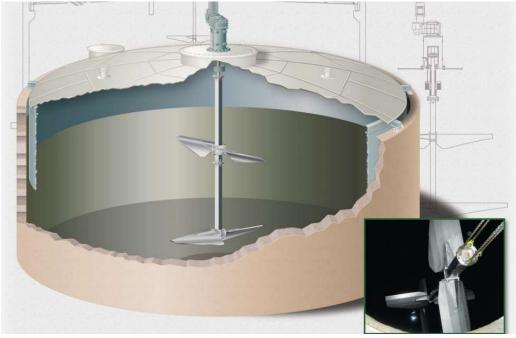
### **Evaluation of Mixing Alternatives – Pumped Recirculation**

- M2: Pumped Recirculation
  - Replace meso pumped recirc mixing in-kind
  - Install pumps and nozzle systems on thermos and newer mesos.
  - o Glass-lined ductile iron to reduce struvite
  - Include standby pumps for redundancy





### **Evaluation of Mixing Alternatives – LM Mixers**


- M3: LM Mixers
  - Mounted to top of gas dome
  - o Low HP
  - Not as uniform mixing, but no reduction in VS destruction





## **Evaluation of Mixing Alternatives – Vertical Shaft Agitation**

- M4: Vertical Shaft Agitation Mixers
  - Mounted to top of gas dome
  - o Low HP
  - Installations in Harlan, IA, and Webster City, IA, other locations in IL, MN and OH



Source: Walker Process



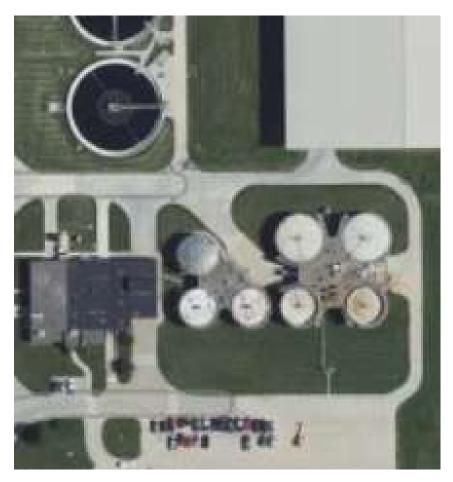
### **Evaluation of Mixing Alternatives – PW Cost and Recommendation**

|                                          | Alternative<br>M1–<br>Draft<br>Tube<br>Mixing | Alternative<br>M2–<br>Pumped<br>Recirculation<br>Mixing | Alternative<br>M3–<br>Linear<br>Motion<br>Mixing | Alternative<br>M4–<br>Vertical<br>Agitation<br>Mixing | Alternative<br>M5–<br>Replace<br>as<br>Existing |
|------------------------------------------|-----------------------------------------------|---------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|
| Capital Cost                             | \$5,229,000 <sup>4</sup>                      | \$3,927,000                                             | \$4,591,000                                      | \$4,976,000                                           | \$4,219,0005                                    |
| Annual O&M                               |                                               |                                                         |                                                  |                                                       |                                                 |
| Maintenance <sup>1</sup>                 | \$58,000                                      | \$29,000                                                | \$43,000                                         | \$48,000                                              | \$45,000                                        |
| Power <sup>2</sup>                       | \$44,000                                      | \$71,000                                                | \$28,000                                         | \$24,000                                              | \$53,000                                        |
| O&M Present<br>Worth Cost                | \$1,571,000                                   | \$1,541,000                                             | \$1,420,000                                      | \$1,109,000                                           | \$1,510,000                                     |
| Replacement                              | \$0                                           | \$450,000                                               | \$0                                              | \$0                                                   | \$0                                             |
| Salvage Value                            | (\$20,000)                                    | \$0                                                     | (\$130,000)                                      | (\$130,000)                                           | (\$30,000)                                      |
| Total Present<br>Worth Cost <sup>3</sup> | \$6,780,000                                   | \$5,918,000                                             | \$5,881,000                                      | \$5,955,000                                           | \$5,699,000                                     |

<sup>2</sup>Power costs at \$0.061 per kilowatt per hour (kWh).

<sup>3</sup>Costs in January 2023 dollars with a discount rate of 2.625 percent.

<sup>4</sup>Capital cost is \$3,900,000 if only draft tube mixer and motors are replaced. Present worth cost is \$5,450,000. <sup>5</sup>Capital cost is \$3,438,000 if only draft tube mixer and motors are replaced. Present worth cost is \$4,840,000.


#### Table 4.02-1 Digester Mixing Alternatives Present Worth Summary



### **Anaerobic Digester Complex – Digester Covers**

### • Age of Covers:

- Thermos 2001, fixed stainless
- Mesos Stage 1 2001, floating SS
- Mesos Stage 2 1990, floating steel
- Storage 1990, Alum dome
- Problems with existing?
  - Insulation replacement on TPAD covers
  - New seals for Thermos
  - Updates for all gas management fixtures





# **Digester Covers**



Rehabilitate and reinsulate newer stainless-steel covers



Replace old covers with new SS covers



## **Digester Covers**

|                                                      | Capital     |
|------------------------------------------------------|-------------|
| Item                                                 | Cost        |
| Demolition                                           | \$50,000    |
| Rehabilitation and Insultation (T8101 through T8401) | \$479,000   |
| New Digester Covers (T8601, T8701)                   | \$1,797,000 |
| Subtotal                                             | \$2,326,000 |
| Piping and Mechanical                                | \$582,000   |
| Electrical                                           | \$116,000   |
| Subtotal                                             | \$3,024,000 |
| Contractor Profit, Bonds, and Insurance (10%)        | \$302,000   |
| Contingencies, Legal, and Engineering (40%)          | \$1,210,000 |
| Total Capital Costs (January 2023 Dollars)           | \$4,536,000 |

 Table 4.03-2
 Digester Cover Improvements Opinion of Capital Cost



| Digester | Heating | System |
|----------|---------|--------|
|----------|---------|--------|

| Digester             | Heat<br>Exchanger | Туре        | Material        | Fluid         | Rated<br>Transfer<br>Capacity<br>(kBTU/hour) | Year<br>Installed |
|----------------------|-------------------|-------------|-----------------|---------------|----------------------------------------------|-------------------|
| Raw Sludge           | HEX8501           | Spiral      | Carbon Steel    | Sludge/Sludge | 4,501                                        | 2001              |
| Raw Sludge           | HEX8502           | Spiral      | Stainless Steel | Sludge/Sludge | 4,501                                        | 2017              |
| T8101                | HEX8101           | Spiral      | Carbon Steel    | Sludge/Water  | 3,000                                        | 2001              |
| T8201                | HEX8201           | Spiral      | Carbon Steel    | Sludge/Water  | 3,000                                        | 2001              |
| T8301                | HEX8301           | Spiral      | Carbon Steel    | Sludge/Water  | 1,180                                        | 2001              |
| T8401                | HEX8401           | Spiral      | Carbon Steel    | Sludge/Water  | 1,180                                        | 2001              |
| T8601                | HEX8601           | Spiral      | Stainless Steel | Sludge/Water  | 575                                          | 2011              |
| T8701                | HEX8701           | Spiral      | Stainless Steel | Sludge/Water  | 575                                          | 2011              |
| T8601 and T8701      | HEX8802           | Spiral      | Stainless Steel | Sludge/Water  | 1,800                                        | 2011              |
| kBTU/hour = thousand | British thermal   | units per h | our             |               |                                              |                   |

#### Table 4.03-3 Digester Sludge Heat Exchangers

- Replace older carbon steel heat exchangers with stainless steel units
- T8401 replaced in 2023



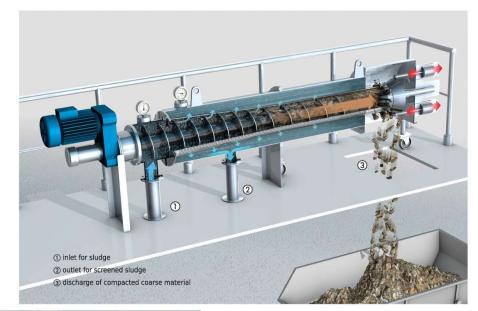


# **Digester Heating - Costs**

| ltem                                          | Capital<br>Cost |
|-----------------------------------------------|-----------------|
| Demolition                                    | \$200,000       |
| Sludge Macerators (4)                         | \$229,000       |
| Sludge Circulation Pumps (9)                  | \$554,000       |
| Spiral Heat Exchangers (4)                    | \$819,000       |
| Plate and Frame Heat Exchangers (3)           | \$123,000       |
| Boilers (2)                                   | \$1,181,000     |
| Hot Water Pumps (8)                           | \$105,000       |
| Subtotal                                      | \$3,211,000     |
| Piping and Mechanical                         | \$803,000       |
| Electrical                                    | \$963,000       |
| Subtotal                                      | \$4,977,000     |
| Contractor Profit, Bonds, and Insurance (10%) | \$498,000       |
| Contingencies, Legal, and Engineering (40%)   | \$1,991,000     |
| Total Capital Costs (January 2023 Dollars)    | \$7,466,000     |



# Sludge Transfer Pumps - Costs




| ltem                                          | Capital<br>Cost |
|-----------------------------------------------|-----------------|
|                                               |                 |
| Demolition                                    | \$50,000        |
| Sludge Macerators (5)                         | \$286,000       |
| Raw Sludge Pumps (2)                          | \$133,000       |
| Sludge Transfer Pumps (9)                     | \$599,000       |
| Subtotal                                      | \$1,068,000     |
| Piping and Mechanical                         | \$267,000       |
| Electrical                                    | \$320,000       |
| Subtotal                                      | \$1,655,000     |
| Contractor Profit, Bonds, and Insurance (10%) | \$166,000       |
| Contingencies, Legal, and Engineering (40%)   | \$662,000       |
| Total Capital Costs (January 2023 Dollars)    | \$2,483,000     |



### **Sludge Screening**

- Screen Perforation 2-10 mm, typically 5 mm
- Removes coarse material (hair, fiber, plastic)
- Huber installations in WI, IL, MN, and IA (Osceola)
- Hydro installations in WI (Milwaukee, Wausau)







Source: Huber (Left) and Hydro-Dyne (Right)

## Sludge Screening

| ltem                                                | Capital<br>Cost |
|-----------------------------------------------------|-----------------|
| Demolition                                          | \$50,000        |
| Building                                            | \$288,000       |
| Screened Sludge Tank                                | \$64,000        |
| Screened Sludge Tank Pumped Mixing System           | \$150,000       |
| Sludge Screens (2)                                  | \$413,000       |
| Digester Feed Pumps (2)                             | \$133,000       |
| Subtotal                                            | \$1,098,000     |
| Sitework                                            | \$51,000        |
| Piping and Mechanical                               | \$275,000       |
| Heating, Ventilation, and Air Conditioning (HVAC)   | \$165,000       |
| Electrical                                          | \$329,000       |
| Subtotal                                            | \$1,922,000     |
| Contractor Profit, Bonds, and Insurance (10%)       | \$192,000       |
| Contingencies, Legal, and Engineering (40%)         | \$769,000       |
| Total Capital Costs                                 | \$2,883,000     |
| Table 4.04-1         Sludge Screening Opinion of Ca | apital Cost     |



## **Summary of Costs**

|                                                                                                                                 | Capital       |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|
| Item                                                                                                                            | Cost          |  |  |  |  |
| Digester Covers                                                                                                                 | \$4,536,000   |  |  |  |  |
| Digester Heating System                                                                                                         | \$7,466,000   |  |  |  |  |
| Sludge Transfer Pumps                                                                                                           | \$2,483,000   |  |  |  |  |
| Sludge Screening                                                                                                                | \$2,883,000   |  |  |  |  |
| Credit for Removing Macerators <sup>1</sup>                                                                                     | (\$1,200,000) |  |  |  |  |
| Mixing (Alternative M3)                                                                                                         | \$4,591,000   |  |  |  |  |
| Total Capital Costs (January 2023 Dollars)                                                                                      | \$20,759,000  |  |  |  |  |
| <sup>1</sup> Deduction for macerators includes associated work (electrical, mechanical, piping, engineering, and construction). |               |  |  |  |  |

## Table 4.06-1 Digestion Improvements Opinion of Capital Cost



### **Struvite Mitigation**

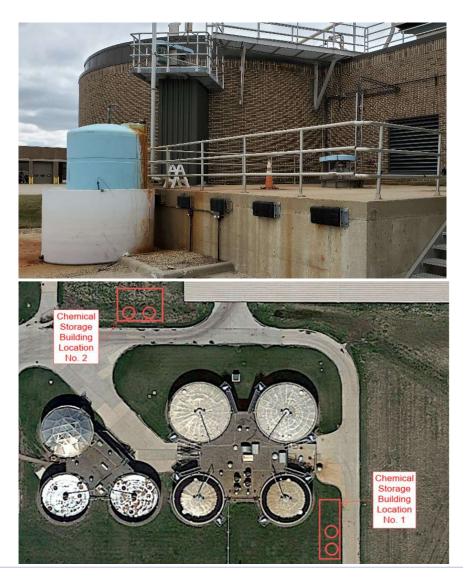
**Struvite Mitigation Benefits** 

- Reduces struvite related O&M costs
- Improves equipment life
- Increases digester usable capacity
- Reduces total P in recycle streams and in effluent
- Helps meet nutrient reduction goals as required by DNR





### **Struvite Mitigation – Alternatives**


- Alternative S1: Add Ferric to Thermophilic Digesters (Continue TPAD)
- Alternative S2: Convert to All Mesophilic Digestion and add Ferric
- Alternative S3: Bio-P, Struvite Sequestration with WAS P-release
  - o Ostara
  - Magprex
  - NuReSys
  - Elovac-P





### Alternative S1: TPAD with Iron Addition

- Existing iron storage uses nonpermanent storage tank
- Currently injecting in sludge equalization tank prior to thermos digesters
- Construct more permanent chemical feed building and systems
- Add ~400 gpd of Ferric Chloride



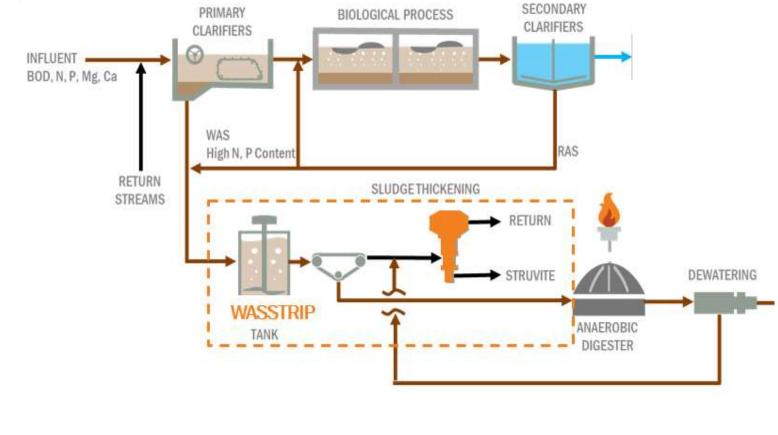


### Alternative S2: Conversion to Mesophilic Digestion with Iron Addition

- All Mesophilic Digestion eliminates drop in temperature and struvite precipitation in sludge heat exchangers
- Does not meet Class A Biosolids requirements
- Construct more permanent chemical feed building and systems
- Add ~250 gpd of Ferric Chloride






## Alternative S3: Bio-P, Struvite Sequestration with WAS P-release





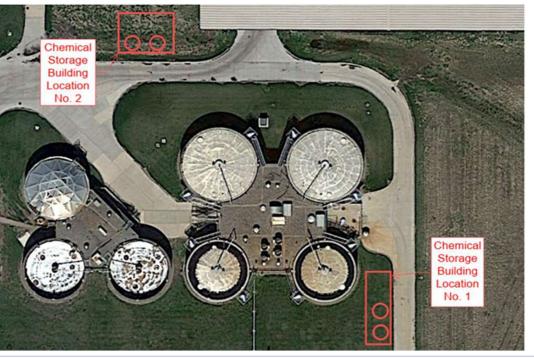








### **Struvite Mitigation – Present Worth Cost Analysis**


#### Table 5.05-1 Struvite Mitigation Alternatives–Opinion of Present Worth Cost Analysis

|                                                 | Alternative S1<br>TPAD with Iron Addition | Alternative S2<br>Conversion to Mesophilic<br>Digestion with Iron Addition | Alternative S3<br>BPR with Struvite Recovery<br>and WAS P-Release |
|-------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------|
| Total Capital Costs                             | \$1,373,000                               | \$1,373,000                                                                | \$13,223,000                                                      |
| Average Annual O&M Costs, Year 20               |                                           |                                                                            |                                                                   |
| Value of Additional Power Required <sup>1</sup> | \$1,200                                   | \$1,200                                                                    | \$4,000                                                           |
| Labor                                           | \$3,000                                   | \$3,000                                                                    | \$31,000                                                          |
| Chemicals <sup>2</sup>                          | \$197,000                                 | \$123,000                                                                  | \$28,500                                                          |
| Polymer and Biosolids Disposal <sup>3</sup>     | \$26,000                                  | \$13,000                                                                   | \$-                                                               |
| Struvite Revenue <sup>4</sup>                   | \$-                                       | \$-                                                                        | \$21,600                                                          |
| Maintenance and Supplies                        | \$12,000                                  | \$12,000                                                                   | \$70,000                                                          |
| Natural Gas Purchased <sup>5</sup>              | \$-                                       | \$13,000                                                                   | \$1,000                                                           |
| Subtotal Opinion of Annual O&M, Year 20         | \$239,000                                 | \$152,000                                                                  | \$156,000                                                         |
| Present Worth of O&M                            | \$3,684,000                               | \$2,344,000                                                                | \$2,404,000                                                       |
| Present Worth of Future Equipment               | \$76,000                                  | \$76,000                                                                   | \$48,000                                                          |
| Present Worth of Salvage                        | \$(123,000)                               | \$(123,000)                                                                | \$(254,000)                                                       |
| Total Present Worth <sup>6</sup>                | \$5,010,000                               | \$3,670,000                                                                | \$15,421,000                                                      |



### **Struvite Mitigation – Comparisons**

- Selected Alternative S1 Keep TPAD and add iron
- Pilot testing proved successful with lower than projected iron doses
- Construct permanent ferric chloride storage and feeding facilities





### **Digester Gas Reuse - Alternatives**

- 1. Building and process heat
- 2. Cogeneration engines or microturbines
- 3. Pipeline quality gas (Renewable Natural Gas; RNG)
- 4. High-strength waste impacts





# **Digester Gas Reuse – Gas Cleaning**

| Gas Conditioning            | Boilers | Engines | Micro-<br>turbines | Renewable NG |
|-----------------------------|---------|---------|--------------------|--------------|
| Hydrogen Sulfide Removal    |         | х       | х                  | x            |
| Moisture Removal            |         | x       | х                  | x            |
| Siloxane Removal            |         | x       | х                  | x            |
| Carbon Dioxide Removal      |         |         |                    | x            |
| Compression (3 to 5 psi)    |         | x       |                    |              |
| Compression (75 to 110 psi) |         |         | х                  | x            |



### H2S and Siloxane Removal



Media Based H<sub>2</sub>S and Siloxane Removal



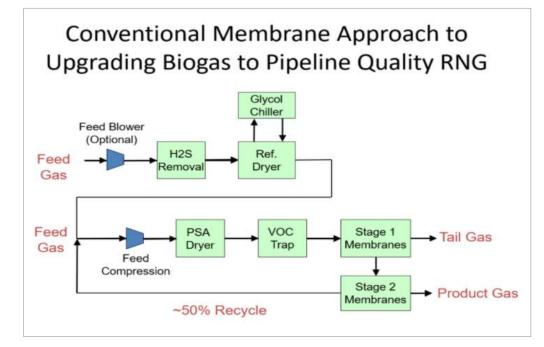
Biological H<sub>2</sub>S Removal



### **Engines and Microturbines – Cogeneration**

- Microturbines are typically more expensive and less electrically efficient than gas engines
- Microturbines have a large parasitic load for compression



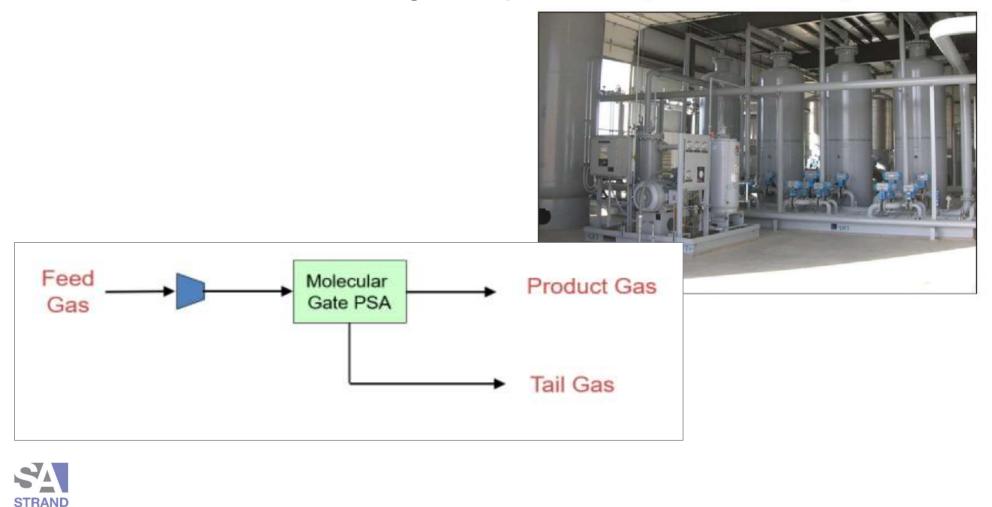

Fond du Lac Biogas Engine



**Dubuque microturbines** 



### **CO2** Removal - Membranes








### CO2 Removal – Pressure Swing Adsorption (PSA)

ASSOCIATES



# **Dubuque PSA and Pipeline Injection**



# **Codigestion Receiving Stations**

- Type(s) of feed stock
  - Heating
  - Screening/grinding
  - Other processing









### Alternative DR-1: Use Digester Gas in Boilers (current operations)

• Replace existing two boilers within next 5+ years



Iowa City Boilers



### **Alternative DR-2: CHP with Reciprocating Engines**

- Install one new 760-kW engine in new building (or 2 smaller engines)
- Boilers continue to be maintained to supply supplemental heat



Fond du Lac Biogas Engine



### **Alternative DR-3: Microturbines**

- Install one new 600-kW Microturbine system (3x 200-kW) in weather-proof enclosure
- Boilers continue to be maintained to supply supplemental heat for process and facilities



**Dubuque microturbines** 

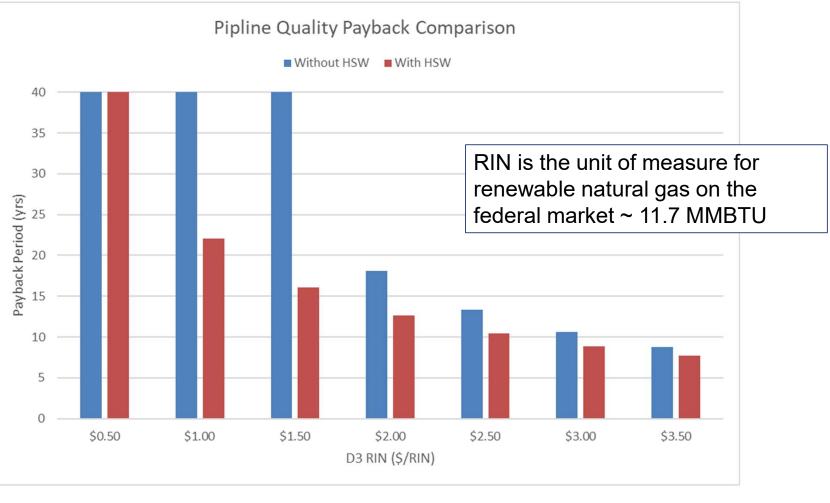


### **Alternative DR-4: Pipeline Injection**

 Install gas conditioning system to produce high-value renewable natural gas (RNG) that can be sold

• Connection point: 2.5 miles of 4" pipe






# **Digester Gas Reuse – Present Worth Analysis w/ HSW**

|                                                               | Alternative DR-1–<br>New Boilers with<br>HSW | Alternative DR-2–<br>New Engines with<br>Gas Conditioning<br>with HSW | Alternative DR-3–<br>New Microturbines<br>with Gas<br>Conditioning with<br>HSW | Alternative DR-4–<br>Pipeline Quality<br>Natural gas with<br>HSW |
|---------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|
| Total Capital Costs                                           | \$6,070,000                                  | \$9,925,00                                                            | \$11,022,000                                                                   | \$13,812,000                                                     |
| Average Annual O&M Costs, Year 20                             |                                              |                                                                       |                                                                                |                                                                  |
| Value of Additional Power Required <sup>1</sup>               | \$-                                          | \$24,000                                                              | \$55,000                                                                       | \$96,000                                                         |
| Value of Electrical Production or RINs <sup>2</sup>           | \$-                                          | \$(378,000)                                                           | \$(305,000)                                                                    | \$(1,013,000)                                                    |
| Value of Brown Gas Sales <sup>3</sup>                         | \$-                                          | <b>\$</b> -                                                           | \$-                                                                            | \$(281,000)                                                      |
| Gas Conditioning Equipment and Media Replacement              | \$-                                          | \$52,000                                                              | \$52,000                                                                       | \$56,000                                                         |
| Equipment Maintenance and Overhaul <sup>4</sup>               | \$32,000                                     | \$149,000                                                             | \$120,820                                                                      | \$21,000                                                         |
| Natural Gas Purchased <sup>5</sup>                            | \$-                                          | \$66,000                                                              | \$56,000                                                                       | \$215,000                                                        |
| Local Utility Charge                                          | \$-                                          | <b>\$</b> -                                                           | \$-                                                                            | \$60,000                                                         |
| Tipping Fee Revenue <sup>6</sup>                              | \$(159,000)                                  | \$(159,000)                                                           | \$(159,000)                                                                    | \$(159,000)                                                      |
| Subtotal Opinion of Annual O&M, Year 20 <sup>7</sup>          | \$(127,000)                                  | \$(246,000)                                                           | \$(180,000)                                                                    | \$(1,005,000)                                                    |
| Present Worth of O&M                                          | \$(3,103,000)                                | \$(4,796,000)                                                         | \$(4,017,000)                                                                  | \$(15,982,000)                                                   |
| Total Present Worth <sup>8</sup>                              | \$2,967,000                                  | \$5,129,000                                                           | \$7,005,000                                                                    | \$(2,170,000)                                                    |
| Subtotal Opinion of Annual O&M, Equivalent Annual             | \$(201,000)                                  | \$(311,000)                                                           | \$(261,000)                                                                    | \$(1,037,000)                                                    |
| Direct Payback=Capital Cost/Equivalent Annual Savings (years) | 30                                           | 32                                                                    | 42                                                                             | 13                                                               |

STRAND ASSOCIATES®

### **Digester Gas Reuse – RIN Sensitivity**





### **Summary - Capital Cost and Phasing**

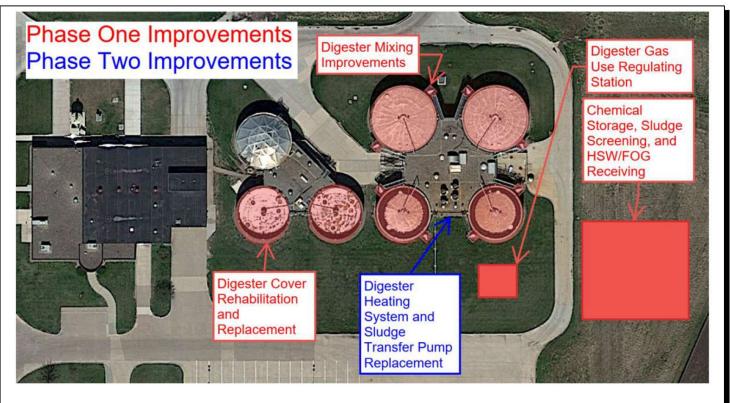



Figure 7.03-1 Recommended Improvements



# **Capital Cost and Phasing**

| Component                                          | Phase 1      | Phase 2     |
|----------------------------------------------------|--------------|-------------|
| Digestion Improvements                             |              |             |
| Alternative M3-Linear Motion Mixing                | \$4,591,000  |             |
| Digester Cover Rehabilitation and Replacement      | \$4,536,000  |             |
| Digester Heating System Replacement                |              | \$7,466,000 |
| Sludge Transfer Pumps Replacement                  |              | \$2,483,000 |
| Sludge Screening Improvements                      | \$2,883,000  |             |
| Struvite Mitigation                                |              |             |
| Alternative S1-TPAD with Iron Addition             | \$1,373,000  |             |
| Digester Gas Use Improvements                      |              |             |
| Alternative DR-4-Pipeline Quality Natural Gas with | \$13,812,000 |             |
| HSW                                                |              |             |
|                                                    |              |             |
| Total Opinion of Capital Costs                     | \$27,195,000 | \$9,949,000 |

Notes:

All costs are in January 2023 dollars.



### Acknowledgements

- City of Iowa City
  - Tim Wilkey, Superintendent
  - Steve Flake, Operations Manager
  - o Ben Clark, Engineering
- Brown and Caldwell
  - Nancy Andrews
  - Don Esping



### **Question and Answer**



Thank you for coming!



# STRAND ASSOCIATES®

Excellence in Engineering<sup>™</sup> Since 1946