The Value of Thickened Aerobic Digestion In BNR Plants

By: Elena Bailey, M.S., P.E.

The Evolution of Thickened Aerobic Digestion To Achieve Low TN and Low TP

Does Effluent Only Depend on the Main Biological Treatment Process?

Did you know... We can improve the efficiency of BOTH the main treatment and dewatering processes without doing anything to either one of them?

OVIVO

Does Effluent Only Depend on the Main Biological Treatment Process?

- Sidestreams from solids handling processes can impact the main treatment system
- For example, sidestreams from anaerobic digestion can add 10%-30% TN and TP load on the main plant

What Happens in Traditional Aerobic Digester Systems? Do they negatively impact the Biological Process Treatment as well?

Aerobic Digestion/Aerated SHT – Decant

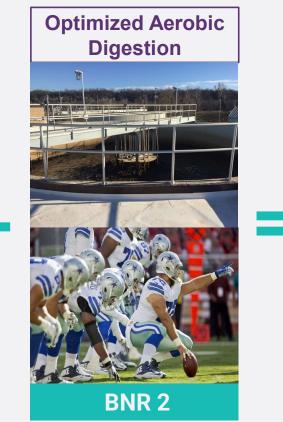
Facility	I otal P (mg/L)	Ammonia (mg/L)	IN (Mg/L)
North Branch, MN	104	23.30	41.10
Lyon, CO	64.4	26.00	48.50

- This load is highly concentrated. Decanting is typically done once a day at a high flow rate over a short time.
- HIGH 02 DEMAND: 4.6 lb 02 to oxidize 1 lb of NH3-N
- Is the main treatment system designed to handle this additional loading biologically? Typically it's not!
- Would chemicals need to be added to meet effluent limits?
- **X** Why pay twice to treat it?

High TN and TP From solids handling is like the QB getting sacked

How to Improve Efficiency of Main Treatment Process?

How do we stop that? A successful quarterback needs a good offensive line to protect him!



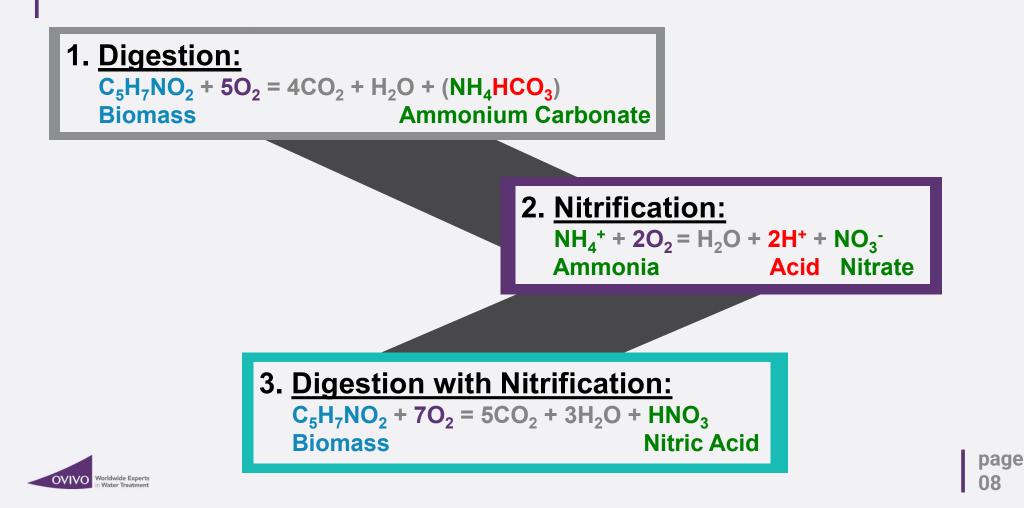
A BNR Process, such as a Carrousel, needs optimizing the solids handling process to protect it and reduce both TN and TP impact to the liquid stream.

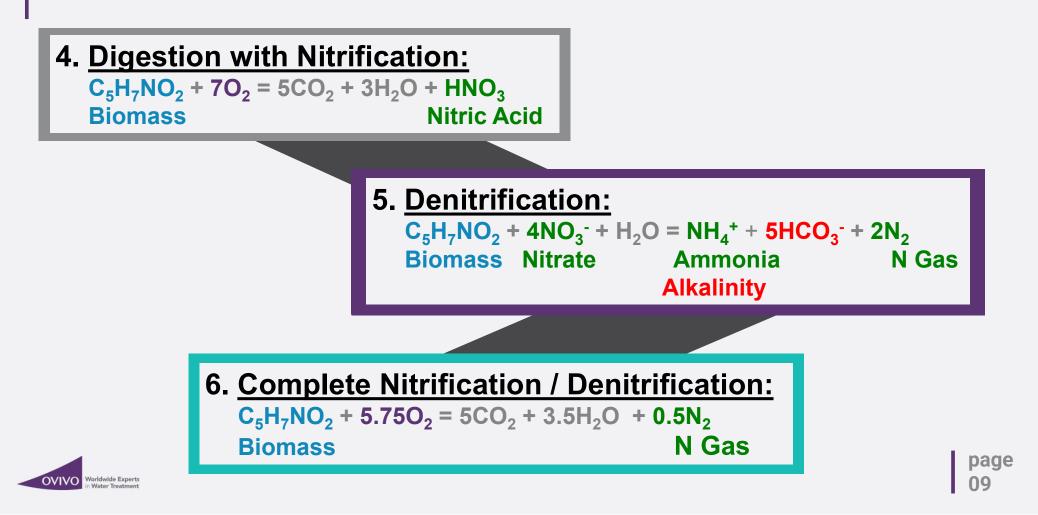
BNR-1 and BNR-2

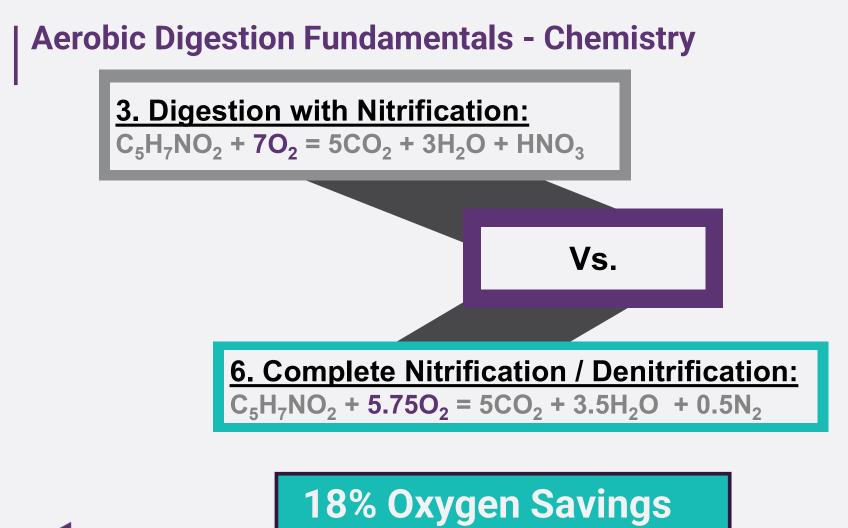
Main Process

Aerobic Digestion Fundamentals - Chemistry Necessary to Understand How To Optimize the Process

Aerobic Digestion is a <u>biological process</u> similar to Activated Sludge with the exception that...


Activated Sludge (Growth)


Aerobic Digestion (Decay)

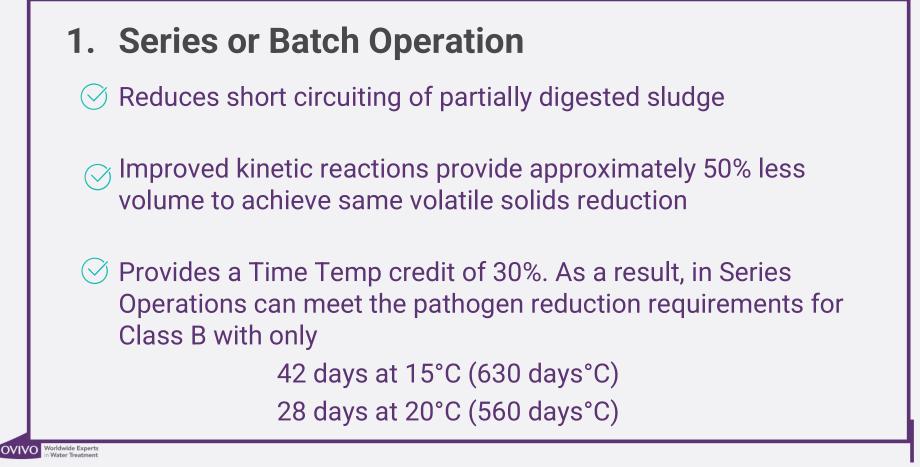


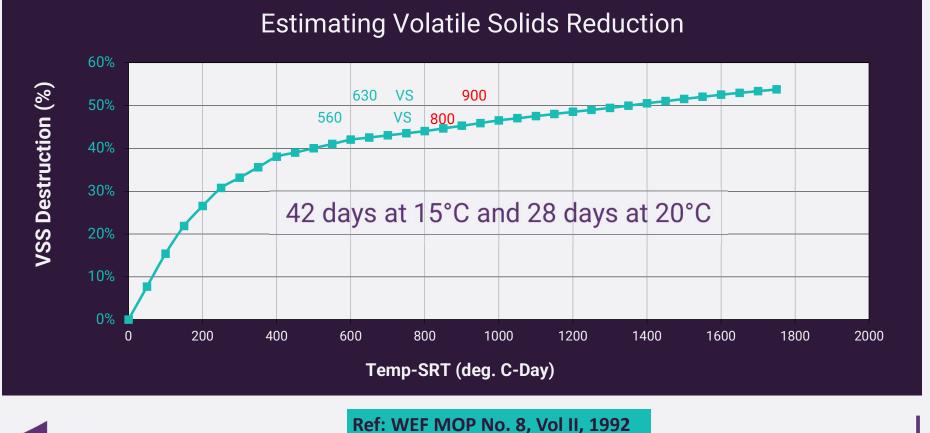
Aerobic Digestion Fundamentals - Chemistry

Aerobic Digestion Fundamentals - Chemistry

OVIVO Worldwide Experts

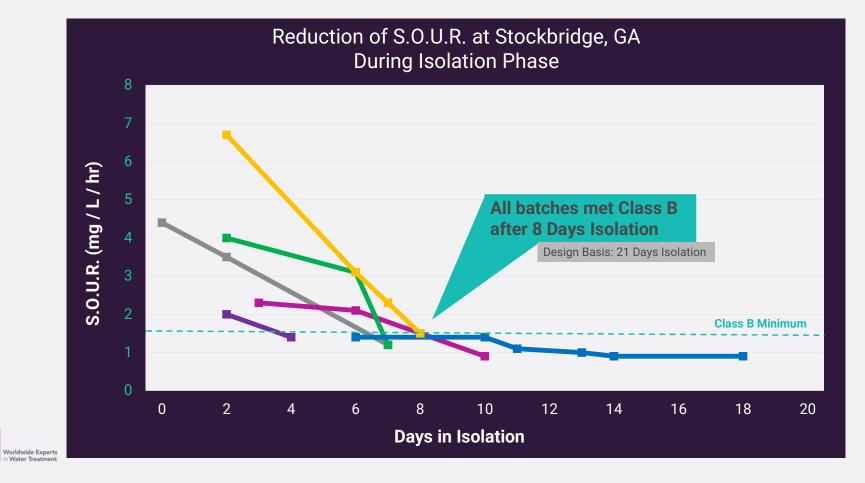
Aerobic Digestion Process System THE HOW


- 1. Series or Batch Operation
- 2. Thickening
- 3. Aerobic & Anoxic Operation
- 4. Temperature Control
- 5. Operational Flexibility

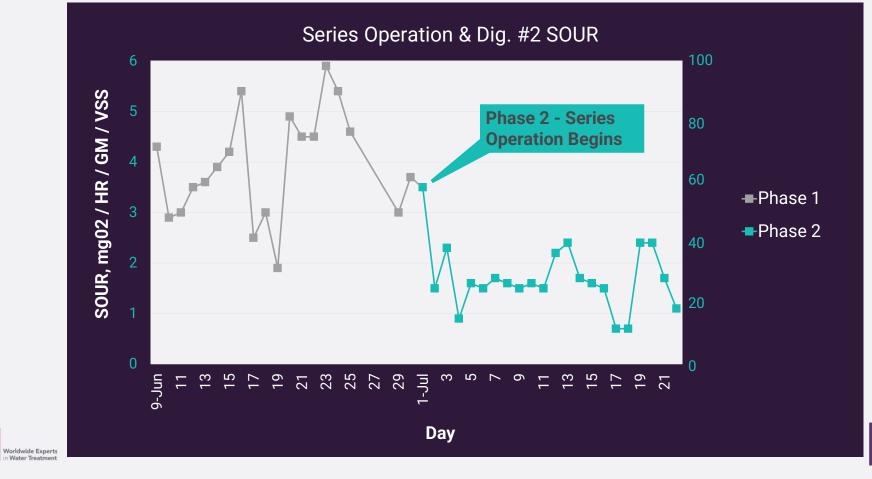

5 Key Techniques Necessary for Optimum Results

OVIVO Worldwide Experts in Water Treatment

Aerobic Digestion Process System THE HOW



1. Series or Batch Operation – Process Optimization THE HOW


1. Series or Batch Operation – Process Optimization Stockbridge, GA WWTP

OVIVO

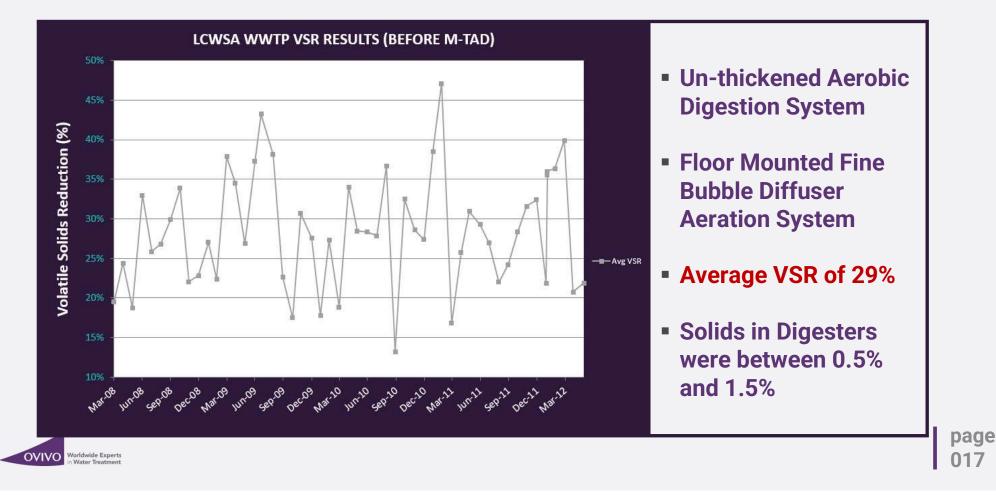
1. Series or Batch Operation – Process Optimization Clyde, OH WWTP

OVIVO

Aerobic Digestion Process System THE HOW

2. Thickening:

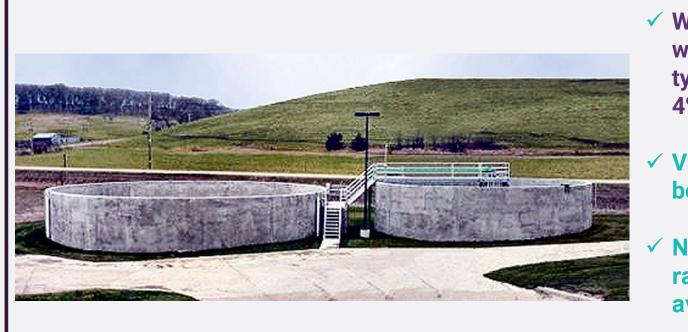
Volatile solids destruction is an exothermic reaction. Thickening solids retains the heat from VS destruction more effectively


Smaller sludge volume

Smaller digesters

➢ Higher sludge temperatures

2. Thickening – Process Optimization Lycoming County, PA WWTP – Results WITHOUT Thickening



2. Thickening – Process Optimization Lycoming County, PA WWTP – Results With Thickening

2. Thickening – Process Optimization Cherokee WWTP, Iowa since 2006 - Results

OVIVO Worldwide Experts

- WAS thickened with Drum Thicker typically between 4% to 5%
- ✓ VSR ranged between 60-70%
- ✓ NH3-N in the range of 7-9 with average of 8.75

Aerobic Digestion Process System THE HOW

- ✓ Reduced total nitrogen
- Oreserve alkalinity
- ⊘ Control odors
- Provides an 18% savings in oxygen requirements
- ⊘ Plants can meet/exceed the Class B requirements

3. Aerobic and Anoxic Operation – Process Optimization Muncy, PA Facility

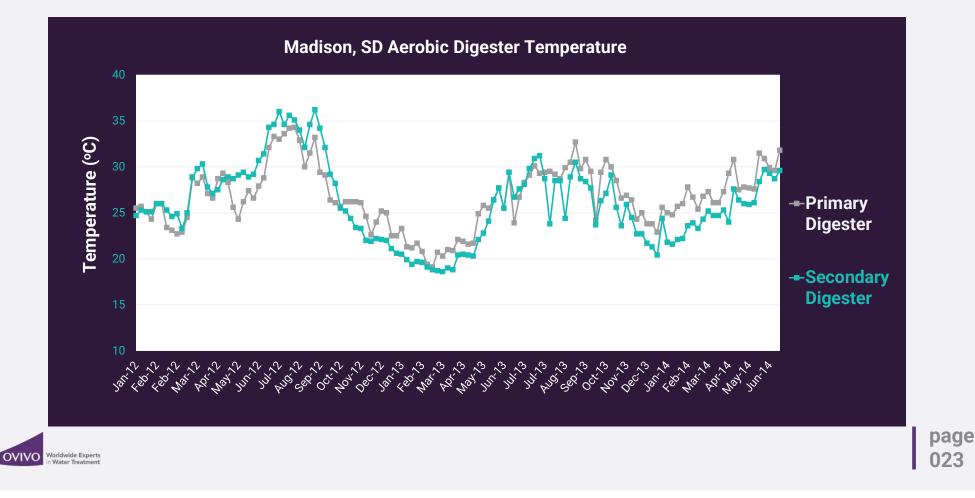
Muncy Aerobic Digester Operation Data (January 2003 – April 2004)				
Parameters	Warm Season	Cold Season		
Monthly average SRT (days)	29 - 54	32 – 75	Customized	
Temperature (°C)	22.5 - 30.5	15.5 – 22.5	Aerobic and	
Dissolved oxygen (mg/L)	0.3 - 2.1	0.5-3.4	Anoxic Cycling	
VS reduction – Class $B \ge 38\%$	69% - 84%	62% - 84%		
SOUR – Class B \leq 1.5 mg/g/hr	0.60	0.62	Very low NH3-N	
F. Coliform – Class $B \le 2$ million/g TS		80,000	and NO2-N observed	
pH range	6.5 - 8.1	6.7 - 7.6		
Average alkalinity (mg/L)	79 – 140	100 – 275		
Average NH ₃ -N (mg/L)	1.1 – 10	1.1 - 8.5		
Average NO ₃ /NO ₂ -N (mg/L)	0 - 7	0 - 8.5		

OVIVO Worldwide Experts in Water Treatment

Aerobic Digestion – Process Optimization THE HOW

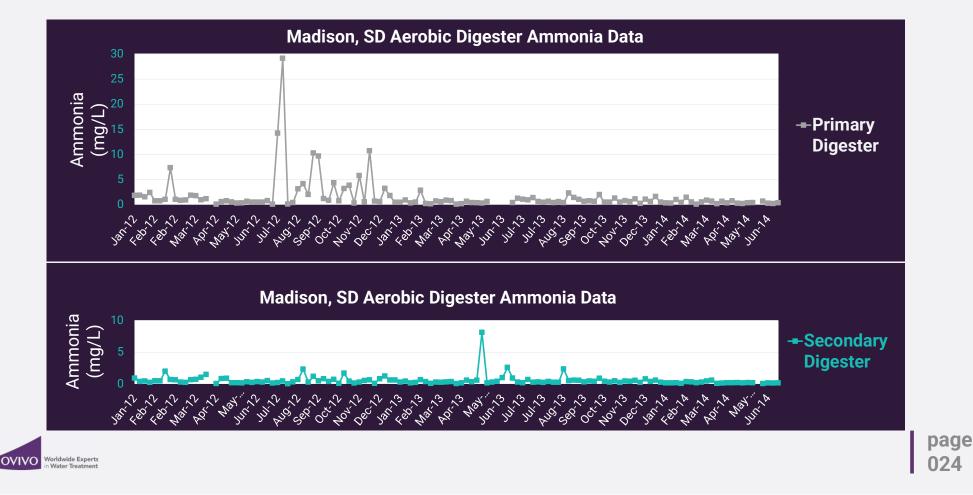
4. Temperature Control:

Mesophilic bacteria is very sensitive to temperature conditions. Less then 15°C nitrification and biological activity is hindered. Temperature greater than 37°C thermophilic bacteria begin to propagate.

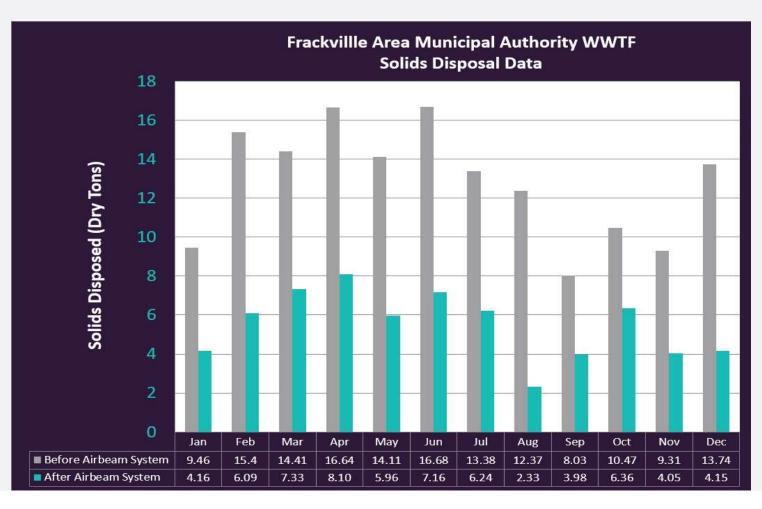

✓ Increased digestion rate

 \bigcirc Consistent operation and performance year round

✓ Maintain healthy biomass



4. Temperature Control – Process Optimization Madison, SD Facility



4. Temperature Control – Process Optimization

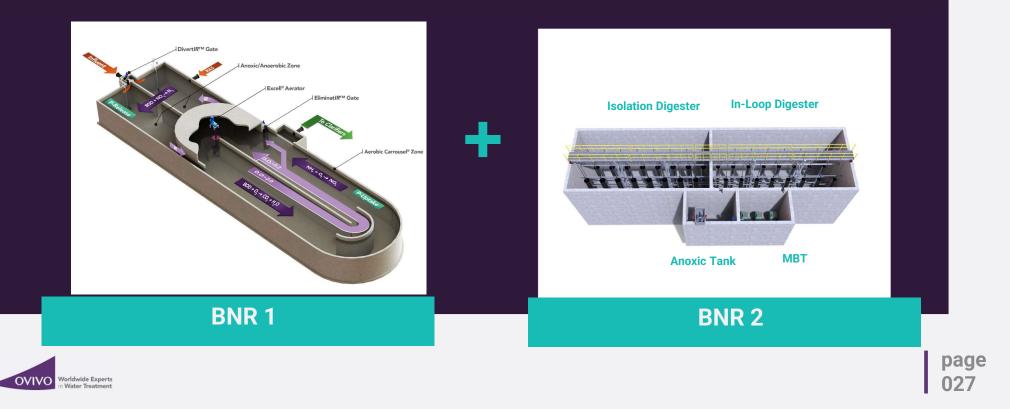
Madison, SD Facility – Nitrification Year Round

4. Temperature Control – Process Optimization Frackville, PA Facility – Reduced Solids Disposal

Aerobic Digestion – Process Optimization THE HOW

5. Operational Flexibility

⊘ Ability to monitor pH, T, and DO


⊘ Ability to control sludge thickness

⊘ Ability to control airflow to the digesters

Membrane Thickened Aerobic Digestion for Low TN and Low TP

A biosolids process solution that integrates a controlled, well engineered, and optimized aerobic digestion process incorporating an SiC membrane thickening system

Membrane Digestion Optimized Aerobic Digestion with Membrane Thickening

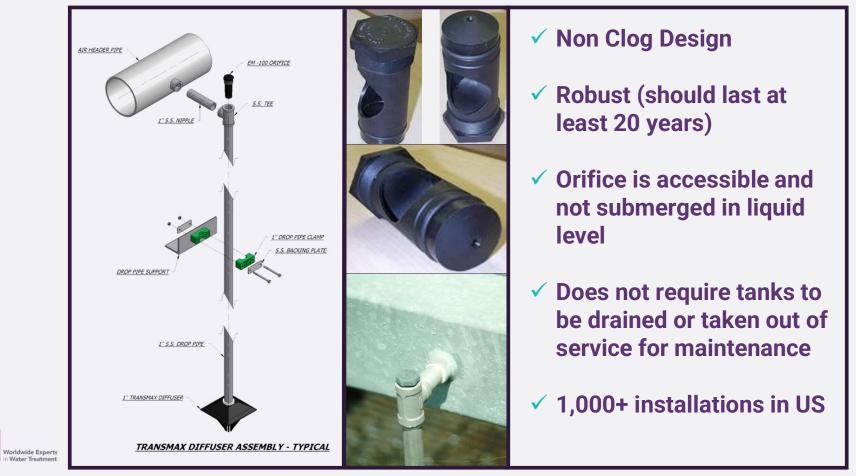
Membrane Digestion

Optimized Aerobic Digestion with Membrane Thickening

Two Key Ingredients Needed

Importance of Aeration to Aerobic Digestion Below water orifices can accelerate fouling in diffusers. What is the impact?

Diffusers get damaged = Added costs to replace diffusers and O&M costs.



Diffusers get clogged = Have to drain tank and clean diffusers. Added 0&M Costs

Perfect Diffuser for Thickened Aerobic Digestion Single Drop Diffuser

OVIVO

Perfect Diffuser for Thickened Aerobic Digestion Shear Tube and Draft Tubes

When Combined with Single Drops can mix and aerate up to 4% solids

Perfect Diffuser for Thickened Aerobic Digestion Airbeam Cover

This Aeration System Provides Optimum Odor and Temperature Control Performance

Silicon Carbide Membranes

Silicon Carbide Ceramic Membranes (SiC) - Distinct Performance Advantages

Ceramic membranes offer distinct performance advantages

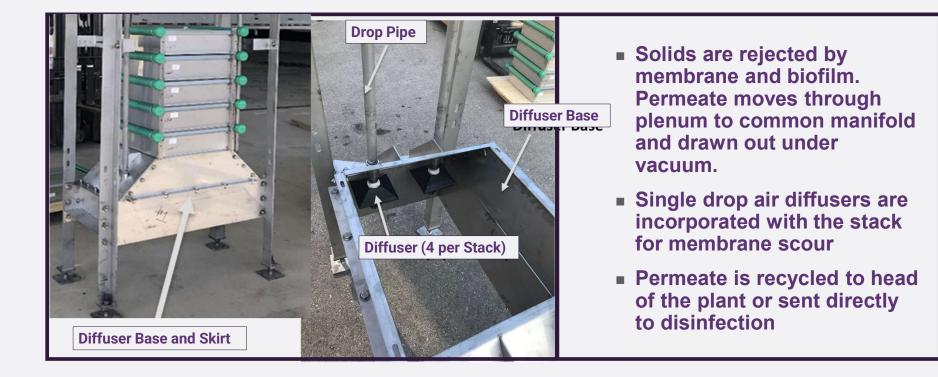
<

Completely hydrophilic Extremely durable High solids tolerance High temperature and chemical tolerance

Silicon Carbide Membranes SiC Membrane Components

OVIVO

Worldwide Experts



Silicon Carbide (SiC) Membrane Components

Silicon Carbide Membranes How Does Membrane Thickening Work?

Worldwide Experts

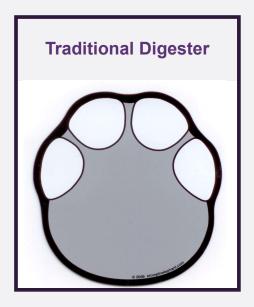
OVIVO

Silicon Carbide Membranes SiC Membrane Technology

page 037

The Silicon Carbide

First SiC manufacturing plant in USA, March 1st 2023



Membrane Thickening Aerobic Digestion History

- It combines our years expertise on both membranes and aerobic digestion
- First US install of this product was Dundee, MI in 2005 with flat plate membranes
- Largest installation at Cayce, South Carolina (25 MGD Plant)
- Have 50+ installations (SiC and Polymeric combined)

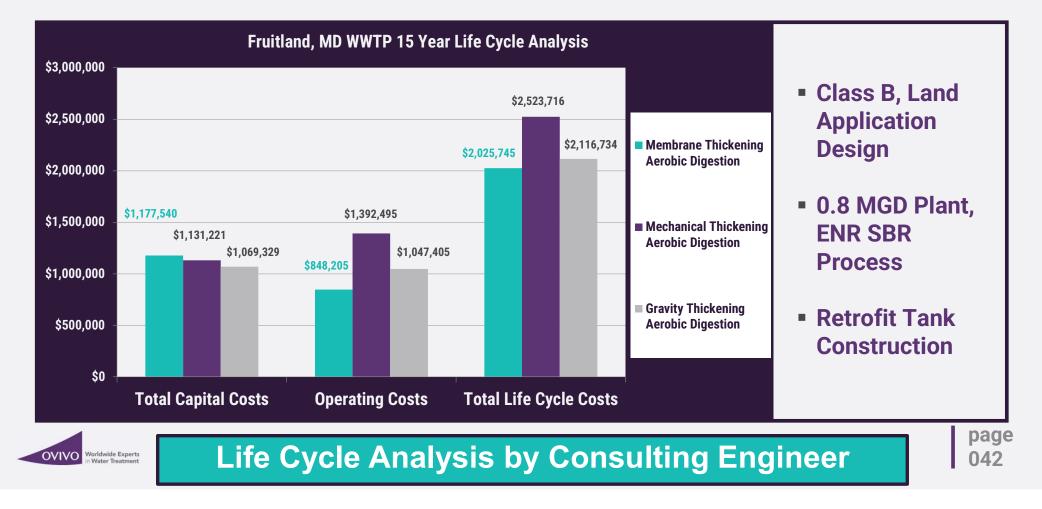
Membrane Thickened Digestion Process Life Cycle Cost Comparison with Traditional Digester Systems

Membrane Thickened Digestion Year Life Cycle Costs MBT Digestion vs Conventional Aerobic Digestion

Conventional Aerobic Digestion

DESIGN CONDITIONS Class B Biosolids			
Process Air Requirement of 2 lb 02/lb VS de	stroved		
20 Year Life Cycle			
Sludge is dewatered with belt press to 16% cake solids and land applied			
DESIGN PARAMETERS			
Plant Flow (MGD)	4		
Plant Flow (MGD) BOD Conecentration (mg/L)	4 250		
	4 250 0.7		
BOD Conecentration (mg/L)			

Standard Aerobic Digestion – Decant to 2% solids


Membrane Digestion System – Thicken to 3% solids

Membrane Thickened Digestion 20 Year Life Cycle Costs Membrane Thickened Digestion vs Conventional Aerobic Digestion

20 YEAR LIFE CYCLE COST COMPARISONS				
MEMBRANE THICKENING AEROBIC DIGESTION				
Equipment Costs	\$1,500,000			
Process Tank Costs		Concrete Costs are \$1,000/cubic yard		
Total Capital	\$2,426,667	Includes Equipment, Building, and Process Tank Costs		
Operating	\$264,000	Includes Chemical and Operating Costs		
Membrane Replacement Costs	\$144,000			
Disposal	\$1,116,582	Based on \$50/ton and \$4/lb polymer		
Energy	\$1,631,126	Based on \$0.06/KWH		
Total Cos	sts \$5,582,374			
STANDARD AEROBIC DIGESTION				
Equipment Costs	\$500,000			
Process Tank Costs	\$1,326,000	Concrete Costs are \$1,000/cubic yard		
Total Capital	\$1,826,000	Includes Equipment, Building, and Process Tank Costs		
Operating	\$468,000	Includes Chemical and Operating Costs		
Disposal		Based on \$50/ton and \$4/lb polymer		
Energy	\$2,195,747	Based on \$0.06/KWH		
Total Cos	sts \$5,641,231			

Membrane Thickened Digestion Process Life Cycle Cost Analysis: Retrofit Example

Sidestream Performance Comparison

Membrane Digestion vs Conventional

Membrane Thickening Process – Permeate			
Facility	Total P (mg/L)	Ammonia (mg/L)	TN (mg/L)
Cayce, SC	1.14	-	<5.0
Dundee, MI	1.09	0.22	<1.0
Union Rome, OH	5.0	<0.1	<1.0
Dickinson, ND	4	2.17	<5.0

Aerobic Digestion – Decant			
Facility	Total P (mg/L)	Ammonia (mg/L)	TN (mg/L)
North Branch, MN	104	23.30	41.10
Lyon, CO	64.4	26.00	48.50

Solids Management Are we done after the solids are digested?

Solids Management is critical! Typically 50% of Plants O&M Expenditures

Aerobic Digester

Sludge Dewatering

- Polymers can cost up to \$50/dry ton solids
- Significant O&M required

Solids Disposal

- Limited Disposal Options
- Landfills limiting how much solids they are accepting
- Disposal can cost up to \$100/wet ton of solids

Reduced Disposal and Improved Dewatering Operations McFarland Creek, OH Facility

McFarland Creek WWTP Improved Dewatering Operations

Annual BFP run time w/o Membrane Digestion Annual BFP run time with Membrane Digestion Reduction BFP run time 8,736 hours 3,744 hours 57.14%

MORE EFFICIENCY MEANS BETTER RESULTS.....

41% Reduction in CUBIC YARDS PRODUCED

36.5% Reduction in DRY TONS PRODUCED

41% Cost Reduction in POLYMER (\$18,000 Annual Savings) 41% Cost Saving in SLUDGE DISPOSAL (\$34,465 Annual Savings) 1.37% Improved Dewatering Cake (18.85% vs 17.48%)

Membrane Thickened Digestion Process

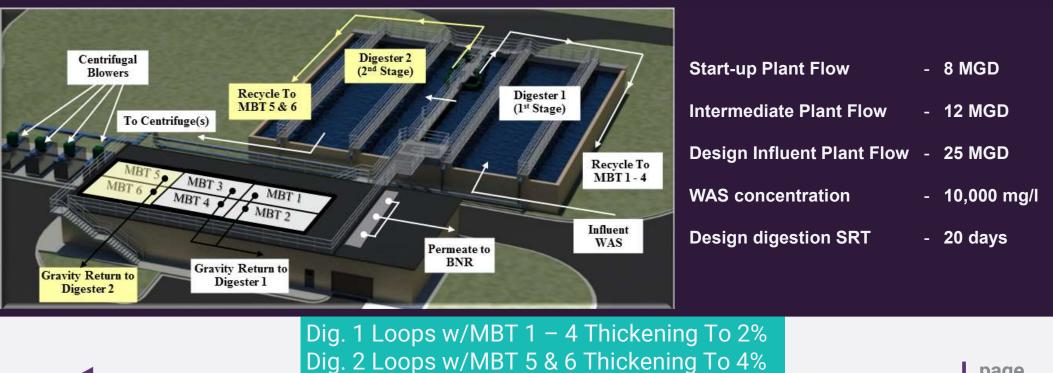
Improved solids management

Reduced Solids Disposal

- Improves digestion by increasing capacity of reactors
- Can improve dewatering operations: reduces polymer, disposal, and run time

OVIVO Worldwide Experts in Water Treatment

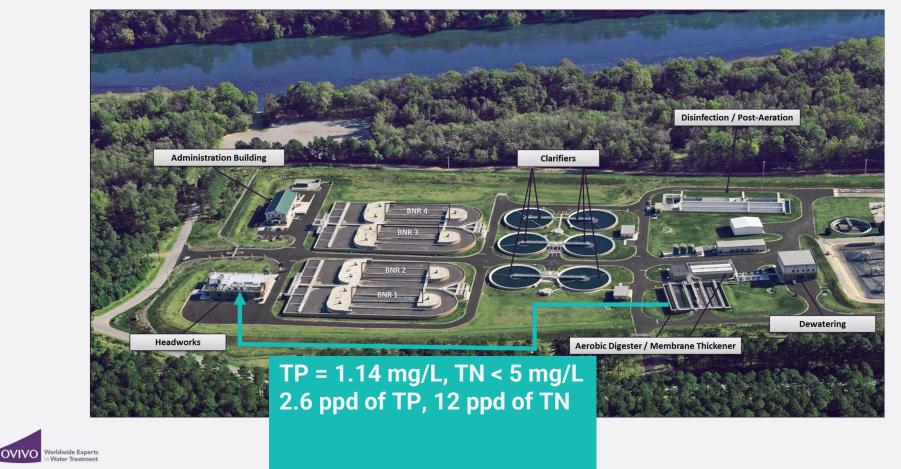
Reduced hauling costs

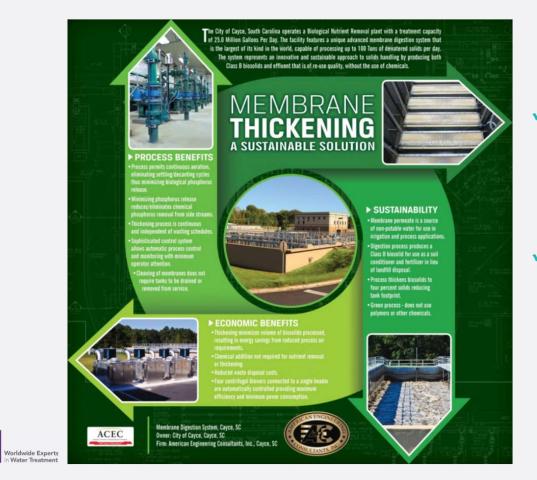

Membrane Thickened Aerobic Digestion Process Cayce, SC Case Study – 25 MGD with TP less 1

н.

Background and Design Criteria

- Start-up Flow = 8 MGD, Design Flow = 25 MGD
- Phosphorus limits important factor in selection of solids handling process
- Conventional Aerobic Digestion w/settling and decanting cycles lead to release of captured phosphorus in solution
 - Compliment BNR process designed for phosphorus removal and minimize expenses to remove twice





	Date	Phosphorus (mg/l)
Effluent Phosphorous Data from the Membrane Digestion Permeate Collection Pipe for the Month of January 2014	01/01/14	2.10
	01/03/14	1.40
	01/06/14	1.60
	01/10/14	1.10
	01/14/14	0.80
	01/20/14	0.50
	01/22/14	1.10
	01/24/14	1.20
	01/27/14	0.50
	Aver. January	1.14

OVIVO

✓ 2014 - AAEE
Grand Prize Award
Small Firm American Academy of
Environmental Engineers

2014 – ACEC
Engineering Excellence Award
American Council of Engineering
Companies of SC

Benefits:

OVIVO World

- 1. Eliminated Construction of a thickener building
- 2. Reduced number and size of digesters by operating at 4% TS
- **3.** Provided flexibility for a gradual flow increase.
- 4. Reduced O&M by eliminating use of polymers required for thickening
- 5. Class B Biosolids Stabilization
- 6. Permeate can be re-used

THESE FACTORS LEAD TO SUBSTANTIAL COST SAVINGS!

Membrane Thickened Digestion Process is Ideal for BNR Plants Ideal to protect BNR-1

High Quality Permeate

- Typical TN and TP of 5 mg/L or less without chemical addition (~1%-5% of overall plant flow)
- Reuse quality that can be recycled to head of plant, combined with effluent, or sent to disinfection
- **Protects effluent quality of BNR Process**

