

Certification

- Certified in Wastewater Treatment?
- Certified in Land Application?
- Certified ABC Biosolids Land Applier?

Biosolids and Agronomic Loading Math Part 1 Basics

3

1

Biosolids & Agronomic Loading Math Part 1 Basics

Steve Moehlmann Brad Tingley
MMES.help Des Moines WRF

Biosolids
Math
Basics

Agronomic Loading Math

Basics

Biosolids and Agronomic Loading Math Part 1 Basics

Special Thanks!

- · Brad Tingley, Des Moines WRF
- Tom Atkinson, Iowa DNR
- · Larry Hare, Des Moines WRF
- Tim Runde, Des Moines WRF
- Scott Wienands, Nutri-Ject Systems
- Emy Lieu, Iowa DNR

Biosolids and Agronomic Loading Math Part 1 Basics

4

Biosolids Raw Sludge \rightarrow Biosolids Cake \rightarrow Land Appl

Biosolids and Agronomic Loading Math Part 1 Basics

5

Our Goals

Calculate biosolids and agronomic loading math basics for Class II Biosolids using anaerobic digestion

- Wastewater treatment operators who apply biosolids as part of their job
- Land application specialists who apply Class II Biosolids that have been anaerobically digested and dewatered

Biosolids and Agronomic Loading Math Part 1 Basics

6

TABLE OF CONTENTS

Checklist Prior to Biosolids Application.. Checklist After Biosolids Application Management Practices Class I & II4-5 Maximum Trace Element Concentrations......6 Allowable Slopes & Required Set Backs......7 Land Use Restrictions..... Recommended Application Practices..... Field Calibration Procedures..... Emergency Spill Procedures..... Crop Nitrogen Recommendations...... Nutrient Removal By Various Crops..... Value of Biosolids Worksheet.... Benefits of Biosolids Land Application.......15 IDNR/EPA Contact Information...... Formulas/Conversions..... References/Resources.....

7

8

IAWEA Definitions

Agronomic Rate – Amount of nitrogen (or other nutrient) which can be utilized by the crop to be grown.

Biosolids – Primarily organic solids produced by waste water treatment processes that are beneficial for recycling on land as a soil conditioner and nutrient source for plant growth.

Biosolids and Agronomic Loading Math Part 1 Basics

8

Biosolids Math Basics Steve Moehlmann, MMES.help

- 1. Hydraulic Retention Time (HRT)
- 2. Volatile Solids Reduction % (VSR%)
- 3. Cake Solids (Solids)

Biosolids and Agronomic Loading Math Part 1 Basics

9

Chapter 67 Land Application of Class II Biosolids Requirements

Processes to Significantly Reduce Pathogens Anaerobic Digestion: "Values for the mean cell residence time (MCRT) and temperature shall be between 15 days at 35° to 55°C and 60 days at 20°C"

Vector Attraction: "The mass of **volatile solids** (*VS*) in the sewage sludge shall be reduced by a **minimum of 38**%

Biosolids and Agronomic Loading Math Part 1 Basics

10

11

Calculate MCRT

Anaerobic Digestion

To calculate MCRT, we will calculate HRT

MCRT = HRT

Biosolids and Agronomic Loading Math Part 1 Basics

12

10

Hydraulic Retention Time, days

ABC Wastewater Treatment Grade 1 – 4

ABC Formula for Detention Time

 $\frac{\text{Volume}}{\text{Flow}} = \frac{\text{Digester Volume gal}}{\text{Raw Sludge Flow gpd}}$

Biosolids and Agronomic Loading Math Part 1 Basics

15

13

14

13

14

Hydraulic Retention Time, days

Anaerobic Digestion

HRT = 35 Days @ 95°F

Biosolids and Agronomic Loading Math Part 1 Basics

HRT = 35 Days @ 95°F

Anaerobic Digestion

✓ Chapter 67: MCRT > 15 days at 35°C

MCRT = HRT = 35 days

35 days @ 95°F > 15 days @ 35°C

$$^{\circ}F = (^{\circ}C)(1.8) + 32 = (35)(1.8) + 32$$

= 63 + 32

= 95°F

Biosolids and Agronomic Loading Math Part 1 Basics

Volatile Solids Reduction %

Wastewater Treatment Grade 3 & 4

VSR % =
$$\frac{VS_{in} - VS_{out}}{VS_{in} - (VS_{in} \times VS_{out})} \times 100\%$$

VS $_{\rm in}$ and VS $_{\rm out}$ must be in decimal form

- VS in is Raw Sludge Volatile Solids
- VS out is Digested Volatile Solids

ABC Formula

Biosolids and Agronomic Loading Math Part 1 Basics

16

16

17

Volatile Solids Reduction, %

Lab Results

VS in = 70%

VS out = 50%

First, convert % to decimal

VS _{in} =
$$\frac{VS\%}{100\%} = \frac{70\%}{100\%} = 0.70$$

VS _{out} = $\frac{VS\%}{100\%} = \frac{50\%}{100\%} = 0.50$

Biosolids and Agronomic Loading Math Part 1 Basics

Volatile Solids Reduction, %

VSR % =
$$\frac{0.70 - 0.50}{0.70 - (0.70 \times 0.50)} \times 100\%$$

 $0.70 - 0.50 = 0.20$
 $(0.70 \times 0.50) = 0.35$
VSR % = $\frac{0.2}{0.70 - 0.35} \times 100\%$

Biosolids and Agronomic Loading Math Part 1 Basics

20

20

18

Volatile Solids Reduction, %

VSR % =
$$\frac{0.2}{0.70 - 0.35}$$
 x 100%
 $0.70 - 0.35 = 0.35$
VSR % = $\frac{0.2}{0.2}$ x 100%

VSR % =
$$\frac{0.2}{0.35}$$
 x 100%
= 0.57 x 100%
= **57%**

Biosolids and Agronomic Loading Math Part 1 Basics

21

HRT & VSR Data

Anaerobic Digestion & Class II Biosolids

Raw
70% VS

140,000 gallons
95°F

VSR = 57%

Biosolids and Agronomic Loading Math Part 1 Basics

23

21

Volatile Solids Reduction, %

Class II Biosolids

✓ Chapter 67: Volatile solids in Class II Biosolids shall be reduced > 38%

Biosolids and Agronomic Loading Math Part 1 Basics

22

Belt Filter Press Dewatered Cake Solids

Data

- 2500 lbs
- 18% Solids

Biosolids and Agronomic Loading Math Part 1 Basics

24

22

Belt Filter Press Dewatered Cake Solids (CS), lbs

2500 lbs of BFP Cake @ 18% Solids

(BFP Cake lbs)(% Solids as decimal)

% Solids as decimal =
$$\frac{\% \text{ Solids}}{100} = \frac{18\%}{100}$$

= 0.18 Solids

Cake Solids lbs = (2500 lbs)(0.18 Solids)

= 450 lbs Solids

Biosolids and Agronomic Loading Math Part 1 Basics

25

Land Application

Who's Under 30?

- 503 adopted 1993
- Chapter 67 in 1994

Biosolids and Agronomic Loading Math Part 1 Basics

27

25

26

Agronomic Loading Math Brad Tingley, Des Moines WRF

- Pre-Application
- Plant Available Nitrogen
- Phosphorus, Potassium, & Zinc
- Site Selection & Coverage Area
- Target Agronomic Rate
- Application Rate and Carry-Over
- Calibrating Applicator
- Actual Application Rate

Biosolids and Agronomic Loading Math Part 1 Basics

26

Lab	
Results	3

Biosolids and Agronomic Lo

Potassium, total

Lab		- ·
D 11 -	Analyte	Result
Results	1G61201-01	BFP Cake - Monthly
	Nitrogen, Ammonia	7720 mg/kg dry
 ppm or 	Nitrogen, Organic	26400 mg/kg dry
mg/kg	pH, Soils	8.5 pH
0/ 0 !! !	% Solids	18.0 %
 % Solids 	Nitrogen, Kjeldahl, total	34200 mg/kg dry
 Available 	Solids, total	18.0 %
	Nitrogen, Nitrate	<5.6 mg/kg dry
nutrients	Arsenic, total	2.55 mg/kg dry
	Cadmium, total	<0.9 mg/kg dry
	Chromium, total	34.9 mg/kg dry
	Copper, total	226 mg/kg dry
	Mercury, total	<0.6 mg/kg dry
Discoulida con I Account of Lorentz	Potassium Oxide	2230 mg/kg dry

28

27

1840 mg/kg dry

Pre-Application Sample Biosolids Nutrients Analyte Result Pollutants 1G61201-01 BFP Cake - Monthly Nitrogen, Ammonia 7720 mg/kg dry Solids Nitrogen, Organic 26400 mg/kg dry 8.5 pH pH, Sous 18.0 % % Solids Nitrogen, Kjeldahl, total 34200 mg/kg dry Solids, total 18.0 % Nitrogen, Nitrate <5.6 mg/kg dry 29 Biosolids and Agronomic Loading Math Part 1 Basics

Plant Available Nitrogen (PAN)

- Organic N Slow Release
- Ammonia N Immediately available
 - Volatilization
- Nitrate/Nitrite Immediately available
 - Insignificant amounts present in Biosolids

Biosolids and Agronomic Loading Math Part 1 Basics

31

29

Nitrogen

- Ammonia N
 - Ammonia (NH₃) or Ammonium (NH₄⁺)
- Organic Nitrogen unavailable to plants
- Nitrate (NO₃-)/Nitrite (NO₂-)
- Total Kjeldahl Nitrogen (TKN)

Biosolids and Agronomic Loading Math Part 1 Basics

31

Plant Available Nitrogen

Nitrogen	Lab Results	Availability
Organic N	26,400 mg/kg	Slow release
Ammonia N	7720 mg/kg	Immediately
Nitrate/Nitrite	< 5.6 mg/kg	Immediately

Biosolids and Agronomic Loading Math Part 1 Basics

32

30

32

Phosphorus, Potassium, & Zinc

- Phosphorus (P)
 - Lab reports elemental P, convert to P₂O₅
- Potassium (K)
 - Convert to K₂O
- Zinc Pollutant
 - Important micronutrient
 - Include when reporting agronomic values

Biosolids and Agronomic Loading Math Part 1 Basics

33

Ammonia N

Ammonia N ppm x 0.002 = lbs/Dry Ton PAN

- 100% available **EXCEPT** for
 - Lost to volatilization or off-gassing
- WRF uses 50% loss factor when not incorporated within 48 hrs

Biosolids and Agronomic Loading Math Part 1 Basics

35

36

35

33

Organic N

lbs/Dry Ton = ppm x 0.002lbs/Dry Ton x 0.20 = 1st year PAN

• 20% (0.20) available 1st growing season

Carry-Over N from Organic N

- 10% (0.10) available 2nd growing season
- 5% (0.05) available 3rd growing season

Biosolids and Agronomic Loading Math Part 1 Basics

34

Total N

Ammonia N + Organic N + Nitrate N

- Surface application of cake solids
- Immediate incorporation

Nutrient	mg/kg or ppm
Ammonia N	7720
Organic N	26,400
Nitrate N	< 5.6

Biosolids and Agronomic Loading Math Part 1 Basics

36

RATE:	TOTAL PLANT AVAILABLE				
DRY	NITROGEN (PAN) LBS/ACRE				
TONS/ACRE	YR 1 Inc	YR1 Uninc.	YR 2	YR 3	
1	36	28	9.8	4.9	
2	71	55	19.6	9.8	
3	107	83	29.4	14.7	
4	143	111	39.2	19.6	
5	178	138	49.0	24.5	
6	214	166	58.7	29.4	
7	250	193	68.5	34.3	
8	285	221	78.3	39.2	
Target Rate	Wet Tons/Acre				
No Carryover	Incorp.	Unincorp.			
140	23	30			
180	30	38			

37 39

Lab Results / PPM		NUTRIENT ANALYSIS		LBS/DRY TON A		AVAIL	
TKN	56975	NITROGEN	LBS/T	% AVAIL	YR 1	YR 2	YR 3
NH4	8038	ORGANIC	97.9	20%	19.6	9.8	4.9
NO3	6	AMMONIA	16.1	1.0	16.1	0.0	0.0
Organic	48950	NITRATE	0.0	100%	0.0	0.0	0.0
		If Incorperated in	48 Hrs.	TOTAL	35.7	9.8	4.9
% Solids	17	If Not Incorperate	ed in 48 Hrs,	TOTAL	27.6		
P2O5	70575	P AS P205	141.2	50%	70.6		
K20	4145	K AS K20	8.3	100%	8.3		
Zinc	615	ZINC	1.2	VARIES	1.2		

Ammonia N Calculations

lbs/Dry Ton = ppm $\times 0.002$

Ammonia N = 7720 ppm

Ammonia N lbs/Dry Ton = ppm x 0.002

 $= 7720 \times 0.002$

= 15.44 lbs/Dry Ton

Biosolids and Agronomic Loading Math Part 1 Basics

40

Organic N Calculations

lbs/Dry Ton = ppm x $0.002 \times \%$ PAN as decimal

Organic N = 26,400 ppm

PAN = ppm x $0.002 \times \%$ PAN as decimal

1st Season PAN = 20%

20% as decimal = $\frac{\%}{100} = \frac{20\%}{100} = 0.20$

PAN lbs/Dry Ton = 26,400 x 0.002 x 0.20

= 10.56 lbs/Dry Ton

Biosolids and Agronomic Loading Math Part 1 Basics

41

Total PAN for 1st Season

Ammonia N + Organic N + Nitrate N

- Ammonia N = 15.44 lbs/Dry Ton
- Organic N = 10.56 lbs/Dry Ton
- Nitrate N = 0.0112 lbs/Dry Ton

PAN lbs/Dry Ton = 15.44 + 10.56 + 0.0112

= 26.0112 lbs/Dry Ton

Biosolids and Agronomic Loading Math Part 1 Basics

43

44

43

41

Nitrate N Calculations

lbs/Dry Ton = ppm $\times 0.002$

Nitrate N = 5.6 ppm

Nitrate N lbs/Dry Ton = ppm x 0.002

 $= 5.6 \times 0.002$

= 0.0112 lbs/Dry Ton

Biosolids and Agronomic Loading Math Part 1 Basics

42

Phosphorus (P) Calculation

Ibs/Dry Ton = ppm x 0.002 x 2.29 x % as decimal Phosphorus to P_2O_5 (Phosphate) Equivalent 50% available to crop

Biosolids and Agronomic Loading Math Part 1 Basics

44

42

IAWEA Biosolids Conference, March 16, 2022

Potassium (K) Calculation

Ibs/Dry Ton = ppm x 0.002 x 1.2 Potassium to K_2O Potash Equivalent

Biosolids and Agronomic Loading Math Part 1 Basics

45

46

Zinc Calculation

lbs/Dry Ton = $ppm \times 0.002$

lbs/Dry Ton = ppm x 0.002

Biosolids and Agronomic Loading Math Part 1 Basics

Site Selection

- Area
- · Crop rotation
- Nutrient requirements

Biosolids and Agronomic Loading Math Part 1 Basics

47

| Sayper Country, Towas (IA009) | Say | Sa

46

45

48

Actual Coverage Area

Agronomic rate = lbs/acre of nutrient

1 acre = 43,560 square feet

Total Area, acres =
$$\frac{\text{Area, square feet}}{43,560 \text{ sq}}$$

= $\frac{\text{L (feet) x W (feet)}}{43,560 \text{ sq}}$

Actual Coverage Area = Total Area - Setbacks

Biosolids and Agronomic Loading Math Part 1 Basics

49

Target Agronomic Rate for Crop

Dry Tons/acre $= \frac{\text{lbs N needed/acre}}{\text{lbs N/Dry Ton}}$ $= \frac{200 \text{ lbs N needed/acre}}{26 \text{ lbs N/Dry Ton}}$ = 7.69 Dry Tons/acre

Biosolids and Agronomic Loading Math Part 1 Basics

51

52

51

49

Target Agronomic Rate for Crop

Calculate Nitrogen needed for your crop
Corn following Corn can use 200 lbs of N/acre
PAN lbs/Dry Ton = 26.0112 lbs/Dry Ton

Dry Tons/acre =
$$\frac{\text{lbs N needed/acre}}{\text{lbs N/Dry Ton}}$$
$$= \frac{200 \text{ lbs N needed/acre}}{26 \text{ lbs N/Dry Ton}}$$

Biosolids and Agronomic Loading Math Part 1 Basics

50

Organic Nitrogen Carry-Over

If we applied on this same site last year, we need to credit the Carry-Over N for the Organic N applied previously. Let's say we applied at the same rate and same values

Carry-Over PAN = ppm x $0.002 \times \%$ PAN as decimal = $26,400 \times 0.002 \times 0.10$

= 5.28 lbs/Dry Ton

Biosolids and Agronomic Loading Math Part 1 Basics

52

Organic Nitrogen Carry-Over

Carry-Over PAN = 5.28 lbs/Dry Ton

Applied Last Year = 7.69 Dry Tons/acre

Carry-Over N = Applied Last Year x Carry-Over N

= 7.69 Dry Ton/acre x 5.28 lbs/Dry Ton

= 40.6 lbs/acre

Reduce N needed by 40.6 lbs/acre

Biosolids and Agronomic Loading Math Part 1 Basics

53

Target Agronomic Rate for Crop

Target Rate is 159.4 lbs N needed

Dry Tons/acre = $\frac{\text{lbs N needed}}{\text{lbs N/Dry Ton}}$

 $= \frac{159.4 \text{ lbs N needed}}{26 \text{ lbs N/Dry Ton}}$

= 6.13 Dry Tons

Biosolids and Agronomic Loading Math Part 1 Basics

55

56

5

53

Organic Nitrogen Carry-Over

Reduce N needed by 40.6 lbs/acre

Corn can use 200 lbs/acre of N

N needed = 200 lbs/acre - 40.6 lbs/acre

= 159.4 lbs/acre

Now we can recalculate the target rate in Dry Tons

Biosolids and Agronomic Loading Math Part 1 Basics

54

Convert Dry Tons to Wet Tons

Wet Tons, acre = $\frac{\text{Dry Tons}}{\text{\% Solids as decimal}}$

Target application rate = 6.13 Dry Tons/acre

Lab Results = 18% Solids

18% as decimal =
$$\frac{\%}{100} = \frac{18\%}{100} = 0.18$$

Wet Tons, acre =
$$\frac{6.13 \text{ Dry Tons/acre}}{0.18}$$

Biosolids and Agronomic Loading Math Part 1 Basics

56

Convert Dry Tons to Wet Tons

Wet Tons, acre = $\frac{6.13 \text{ Dry Tons/acre}}{0.18}$

= 34 wet tons/acre

34 wet tons/acre will provide 159 lbs PAN needed for our target agronomic rate for corn

Biosolids and Agronomic Loading Math Part 1 Basics

57

Wet Tons of Biosolids Needed for Site

DATA

59

60

- Site = 20 acres
- PAN Needed = 159 lbs/acre
- PAN Available = 26 lbs PAN/DT Biosolids
- Biosolids = 18% Solids

Biosolids and Agronomic Loading Math Part 1 Basics

59

57

Wet Tons of Biosolids Needed for Site Selected

To calculate how wet tons of Biosolids are needed for a site, we need to calculate

- Ibs of PAN
- Biosolids Dry Tons (DT)
- Biosolids Wet Tons (WT)

ig Math Part 1 E

Biosolids and Agronomic Loading Math Part 1 E

Total PAN Needed for Site

- PAN Needed = 159 lbs/acre
- Site = 20 acres

Total PAN Needed = PAN Needed x Site

= 159 lbs/acre x 20 acres

= 3180 lbs

Biosolids and Agronomic Loading Math Part 1 Basics

60

Bisolids Needed for Site

- PAN Needed = 3180 lbs
- PAN Available = 26 lbs/DT Biosolids

Biosolids Needed = $\frac{PAN \text{ Needed}}{-}$ PAN Available 3180 lbs 26 lbs/DT of Biosolids

= 122 DT Biosolids

Biosolids and Agronomic Loading Math Part 1 Basics

61

63

61

Wet Tons of Biosolids **Needed for Site**

- Biosolids Needed = 122 DT
- Biosolids = 18% Solids = 0.18 Solids

Biosolids DT Biosolids Wet Tons = $\frac{\text{Biosolids DI}}{\text{% Solids as decimal}}$ **= 678 Wet Tons**

Biosolids and Agronomic Loading Math Part 1 Basics

62

Calibrating Applicator

Data

To Find Tons

Needed Per Pass

To Find Width of

Spreader holds 12 wet tons

To covert Dry Tons/Acre to Wet Tons/Acre -- Devide Dry Ton Amount by %Solids (as a decimal) 6 (DT) / .17 (17%) = 35.29 Wet Tons/Acre

Length X Width ÷ 43560 x Rate

1200 X 25 ÷ 43560 x 33

Tons/Unit x 2

13 x 2

To Calculate Wet Tons/Acre -- Target Nitrogen Rate (Devided by) Lbs. Nitrogen per DT (Devided by) Percent Sloids (as Decimal) Example - Bean to Corn 140 Lbs. Nitrogen 140 (Lbs. N Desired) / 23.7 (Lbs. N per DT - if not inc.) / .19 (19% Solids) = 31 (Wet Tons per Acre)

> This is the number of Spreaders Working in the

Tons/Pass + Rate x

26 ÷ 33 x

1200

field- Could be 1, 2, or 3

- Coverage width = 15 feet
- Applying 34 wet tons/acre

Coverage Area per Load = $\frac{\text{Wet Tons/Load}}{\text{Application Rate}}$

Biosolids and Agronomic Loading Math Part 1 Basics

64

62

67

68

Coverage Area per Load

- Spreader = 12 wet tons
- Applying 34 wet tons/acre

Coverage Area per Load =
$$\frac{\text{Spreader}}{\text{Application Rate}}$$
$$= \frac{12 \text{ wet tons}}{34 \text{ wet tons/acre}}$$
$$= 0.35 \text{ acres/load}$$

Biosolids and Agronomic Loading Math Part 1 Basics

65

Convert Coverage Area from Acres to Square Feet

• Coverage Area = 0.35 acres/load

1 acre = 43,560 square feet (sf)

Area, sf = acres x 43,560 sf/acre

= 0.35 acre x 43,560 sf/acre

= 15,246 square feet

Biosolids and Agronomic Loading Math Part 1 Basics

67

65

Coverage Length per Load

- Coverage Width = 15 feet
- Coverage Area = 0.35 acres/load

To calculate the Coverage Length

- First, we need to convert Coverage Area per Load in acres to square feet
- Then calculate the length using the area formula

Biosolids and Agronomic Loading Math Part 1 Basics

66

Coverage Length in Feet

- Coverage Area =15,246 square feet
- Area sf = Length feet x Width feet

Length ft =
$$\frac{\text{Area square feet}}{\text{Width feet}}$$
$$= \frac{15,246 \text{ square feet}}{15 \text{ feet}}$$
$$= 1016 \text{ ft}$$

Coverage Length per load is 1016 feet

Biosolids and Agronomic Loading Math Part 1 Basics

6

Actual Application Rate

 Once the application is complete, we need to calculate the actual rate applied

 N value is affected by incorporation immediately or within 48 hours

Biosolids and Agronomic Loading Math Part 1 Basics

69

Biosolids Applied

- Biosolids Applied = 600 wet tons
- Solids = 18% = 0.18

Biosolids DT = Biosolids WT x % Solids

= 600 WT x 0.18

= 108 DT of Biosolids applied

108 DT of Biosolids applied to 20 acres

Biosolids and Agronomic Loading Math Part 1 Basics

71

72

71

69

Actual Application Rate

Data

- Biosolids Applied = 600 wet tons
- Solids = 18% = 0.18
- PAN = 26 lb N/DT
- Site = 20 acres

Biosolids and Agronomic Loading Math Part 1 Basics

70

PAN Applied

- Biosolids Applied = 108 Dry Tons
- PAN Available = 26 lbs PAN/Biosolids DT

PAN Applied lbs = Biosolids DT x PAN Available

= 108 DT x 26 lbs PAN/DT

= 2808 lbs of PAN applied

2808 lbs of PAN applied to 20 acres

Biosolids and Agronomic Loading Math Part 1 Basics

72

75

76

PAN Applied per Acre

- PAN Applied = 2808 lbs of PAN
- Site = 20 acres

PAN Applied/Acre = $\frac{\frac{\text{PAN Applied}}{\text{Site}}}{\frac{2808 \text{ lbs of PAN}}{20 \text{ acres}}}$ = 140 lbs of PAN/acre

Biosolids and Agronomic Loading Math Part 1 Basics

73

Resources

- IAWEA Biosolids Land Application Guide, 2nd Ed
- Minnesota Pollution Control Agency Land Application of Biosolids Manual, 2001
- Recommended Standards for Wastewater Facilities, 2014 Edition
- IAC Chapter 67 Standards for the Land Application of Sewage Sludge, March 16, 2022
- USEPA A Plain English Guide to the EPA Part 503 Biosolids Rule

Biosolids and Agronomic Loading Math Part 1 Basics

75

73

How Did We Do?

- PAN Needed = 159 lbs/acre
- PAN Applied = 140 lbs/acre
 Too much, too little, or just right?

 Are we in compliance with Chapter 67?

Biosolids and Agronomic Loading Math Part 1 Basics

74

Resources

- ABC Formula/Conversion Table
 - Biosolids Land Application Certification Exam
 - Wastewater Certification Exams
- CSUS Operation of Wastewater Treatment Plants Volume II, 7th Edition
- Anaerobic Sludge Digestion Process by the Michigan Department of Environmental Quality Operation Training & Certification Unit
- USEPA Control of Pathogens and Vector Attraction in Sewage Sludge

Biosolids and Agronomic Loading Math Part 1 Basics

76

74

IAWEA Biosolids Conference, March 16, 2022

77

